
Version control
E6891 Lecture 4

2014-02-19

Today’s plan

● History of version control
○ RCS, CVS, SVN, Git & friends

● Distributed version control

● Best practices for research
○ … aka, Brian’s work flow?

What is version control?

● Tracking changes to your project

● Who changed what, when?

● Why do I need this?
○ Systematic journaling
○ Collaboration
○ Release management

Version control for research?

● Document your progress

● Project management

● Backups, and rollback mistakes

● Collaborative development, writing

● Versioning of software
○ and results!

Revision Control System (RCS)
[Tichy, 1982]

● Provides version control for a single file
○ changes tracked by unix diff

● Transaction-based:
○ check out/lock file.ext
○ edit file.ext
○ check in file.ext

Drawbacks of RCS

● Each file versioned independently

● No concept of user management

● Manual synchronization
○ via rsync
○ or working in the same directory

Concurrent Versions System (CVS)
[1986, 1990]

● Multiple-file versioning

● Transactional architecture
○ check out/lock the repository
○ edit files
○ check in/unlock

● Changes are only allowed to latest version

Drawbacks of CVS

● Changes can only be made against the
head
○ In practice, only one person can modify at a time

● Networking is clumsy

● Commits are not atomic

● Poor support for binary files

Subversion (SVN)
[2000]

● Similar to CVS, but with many improvements

● Centralized client-server architecture
○ Allows for distributed development
○ … and direct sharing of code via public servers
○ (CVS did via pserver, but it was painful)

● Better support for binary files

Drawbacks of SVN
… or centralized VCS in general

● Versioning is done server-side
○ Incremental local development is tricky
○ Possible with branches, but merging is a headache

● Single point of failure
○ Rebuilding a repository from a checkout isn’t fun

● Distributed development from outsiders?

Git
[Torvalds, 2005]

● Distributed version control system (DVCS)

● Does not require a centralized server
○ but you can still have one, if you want

● Other DVCSs
○ Mercurial (hg)
○ Bazaar (bzr)

Client-server git usage

1. git clone https://server/repository.
git
Make a local copy of the repository

2. (edit files)

3. git commit
Register your changes locally

4. git push
Share changes upstream

5. git pull
Get updates from upstream

https://server/repository.git
https://server/repository.git
https://server/repository.git

Advanced usage: tags

● Some revisions are special:
■ initial paper submission
■ camera-ready submission
■ public software releases (1.0, 1.1, …)

● Tagging links semantic versions to revisions

● Example:
○ git tag -a v1.0
○ git push origin --tags

Advanced usage: branches

● What if you want to develop new features,
but retain version control on a stable
codebase?

● Work in a branch of the source tree

● Merge back when you’re ready

● Especially useful for collaborations

Branching

● Example: create a new branch
○ git checkout -b unstable
○ (edits, commits, pushes)

● Switch to master, bug fix, switch back
○ git checkout master
○ (edits, commits, pushes)
○ git checkout unstable

● Merge unstable back into master
○ git checkout master
○ git merge unstable

master

unstable

GitHub
[2008]

● Free hosting for open source projects
○ Free organization accounts for academics

● Social network integration
○ Surprisingly useful for research

● Extra usability tools:
○ user management
○ pull requests
○ issue tracking, comments, wiki
○ release management

My usual work flow

● Pull from github
○ Either develop or master, depending...

● Develop locally
○ first in ipython notebook
○ then in versioned source
○ run unit tests
○ commit
○ keep editing, pulling changes from collaborators

● When it’s ready
○ push back to github

Research repositories

● When milestones happen, tag
○ Just after submitting the paper
○ When the final camera-ready goes out
○ Subsequent versions

● What’s in a typical repository?
○ README Description and instructions
○ code/ Source code
○ data/ Sometimes: input data
○ paper/ LaTeX source for the paper
○ results/ Sometimes: output data, models

Some of my repositories

● LibROSA
○ https://github.com/bmcfee/librosa
○ Python module for audio processing research

● MLR
○ https://github.com/bmcfee/mlr
○ Matlab program for metric learning
○ (imported to git after development)

● Gordon
○ https://github.com/bmcfee/gordon
○ migrated from bitbucket to github

https://github.com/bmcfee/librosa
https://github.com/bmcfee/librosa
https://github.com/bmcfee/mlr
https://github.com/bmcfee/mlr
https://github.com/bmcfee/gordon
https://github.com/bmcfee/gordon

Best practices

● Use meaningful commit messages!

● BAD
git commit -a -m “foo”

● GOOD
git commit -a -m “changed

default lambda parameter to 1.0”

Best practices

● Commit often
○ push less often

● Use tags and milestones

● Use issue tracking

